CLOSE

RESEARCH

Far UltraViolet
Spectroscopy
Near InfraRed
Spectroscopy
Infrared
Spectroscopy
FIR/Terahertz andlow-frequency
Raman Spectroscopies and
quantum chemistry studies of polymers
Raman
Spectroscopy
Application of Quantum Chemistry to Spectroscopy

Application of Quantum Chemistry to Spectroscopy

Molecular spectroscopy of condensed phase such as Raman, infrared (IR), near-infrared (NIR), Terahertz (THz), and far-ultraviolet (FUV) spectroscopy has recently shown significant development. In the meantime, quantum chemical calculations have advanced and have been used extensively for a variety of spectroscopy. Quantum chemical approaches play crucial roles in the spectral analysis. They also yield important information about molecular and electronic structures and electronic transitions together with spectroscopy. Combined methods of spectroscopy and quantum chemical calculations are powerful methods for science, in general. We have been involved in developing a strong bridge between molecular spectroscopy and quantum chemical approaches (1-7). Our studies appeal to a wide area of chemistry and related areas, particularly to physical chemistry, analytical chemistry, materials science, nanoscience, and bioscience.

Our investigations are concerned with a wide area of molecular spectroscopy from FUV (120-200 nm) to far-infrared (FIR, 400-10 cm-1)/terahertz and Raman spectroscopy. As quantum chemical approaches, we have applied several anharmonic approaches such as vibrational self-consistent field (VSCF) method and combination of periodic harmonic calculations with anharmonic corrections based on finite models, grid-based techniques like Numerov approach, Cartesian coordinate tensor transfer (CCT) method, Symmetry-Adapted Cluster Configuration-Interaction (SAC-CI) method, and ZINDO (Semi-empirical calculations at Zerner’s Intermediate Neglect of Differential Overlap) method (1-7). Therefore, our investigations overview cross relations between molecular spectroscopy and quantum chemical approaches, and provide various kinds of close-reality advanced spectral simulation for condensed phases.

From the point of quantum chemical calculations we have been investigating various relatively new quantum chemical calculations. For IR and NIR spectroscopy we (Bec and Hofer et al.) have employed several kinds of anharmonic calculations such as VSCF (21-25,30) and grid-based approaches like the Numerov framework (29). We (Yamamoto et al.) have applied the CCT method for the simulations of FIR/Terahertz and low-frequency Raman spectra of polymers (35-38) and ROA of poly L-lysine (39). SAC/SAC-CI theory has been utilized (Morisawa et al.) for calculations of FUV spectra of organic molecules. ZINDO approach has been used to accurately model FUV-DUV spectra of graphene nanostructures (19,20).

Recent important publications (Books and review)

1. Wojcik, M. J.; Nakatsuji, H.; Kirtman, B.; Ozaki, Y., Eds.; Frontiers of Quantum Chemistry, Springer Nature, Singapore, 2018.

2. Ozaki, Y.; Wojcik, M. J.; Popp, J.; Molecular Spectroscopy; A Quantum Chemical Approach, Wiley-VCH, Weinheim, Germany, 2019.

3. Yukihiro Ozaki, Kryzysztof, Beć, Yusuke Morisawa, Shigeki Yamamoto, Ichiro Tanabe , Christian, W. Huck, Thomas Hofer, Recent advances in quantum chemical approach in molecular spectroscopy of the condensed phase, Chem. Soc. Rev. DOI: 10.1039/d0cs01602k (2021).

The important publications on quantum chemical approach for molecular spectroscopy from the Ozaki group.

Reviews and Books

1. Ozaki, Y. Bull. Chem. Soc. Jpn, 2019, 92, 629-654.

2. Ozaki, Y.; Kawata, S. Eds., Far- and Deep-Ultraviolet Spectroscopy, Springer, Tokyo, 2015.

3. Ozaki, Y.; Huck, C. W.; Tuchikawa, S.; Engelsen, S. B. eds.; Near-infrared Spectroscopy; Theory, Spectral Analysis, Instrumentation, and Applications, Springer, 2020.

4. Czarnecki, M. A.; Morisawa, Y.; Futami, Y.; Ozaki, Y. Chem. Rev., 2015, 115, 9707-9744.

5. Wojcik, M. J.; Nakatsuji, H.; Kirtman, B.; Ozaki, Y., Eds.; Frontiers of Quantum Chemistry, Springer Nature, Singapore, 2018.

6. Ozaki, Y.; Wojcik, M. J.; Popp, J.; Molecular Spectroscopy; A Quantum Chemical Approach, Wiley-VCH, Weinheim, Germany, 2019.

7. Beć, K. B.; Grabska, J.; Huck, C. W. Ozaki, Y. In Molecular Spectroscopy; A Quantum Chemical Approach, Ozaki, Y.; Wojcik, M. J.; Popp, J. Eds.; Wiley-VCH, Weinheim, Germany, 2019; pp353-388.

Publications before 2010

8. Tanaka, T.; Nakajima, A.; Watanabe, A.; Ohno, T.; Ozaki, Y.; Vib. Spectrosc., 2004, 34, 157-167.

9. Katsumoto, Y.; Tanaka, T.; Ozaki, Y.; J. Phys. Chem., 2005, 109, 20690-20696.

10. R. Murakami, H. Sato, J. Dybal, T. Iwata, and Y. Ozaki: Formation and Stability of β-Structure in Biodegradable Ultra-High-Molecular-Weight Poly(3-hydroxybutyrate) by Infrared, Raman, and Quantum Chemical Calculation Studies, Polymer, 48, 2672-2680 (2007).

Far-ultraviolet Spectroscopy

11. Morisawa, Y.; Tanabe, I.; Ozaki, Y. In Frontiers and Advances in Molecular Spectroscopy, Laane, J. Ed., Elsevier, Amsterdam, 2018; pp. 251-286.

12. Tanabe, I. Ozaki, Y. J. Mater. Chem. C. 2016, 4, 7706-7717.

13. Morisawa, Y.; Ikehata, A.; Higashi, N.; Ozaki, Y. J. Phys. Chem. A. 2011, 115, 562-568.

14. Morisawa, Y.; Tachibana, S.; Ehara, M.; Ozaki, Y. J. Phys. Chem., 2012, 116, 11957-11964.

15. Morisawa, Y.; Yasunaga, M.; Fukuda, R.; Ehara, M.; Ozaki, Y. J. Chem. Phys., 2013, 139, 154301.

16. Ehara, M.; Morisawa, Y. In Molecular Spectroscopy; A Quantum Chemical Approach, Ozaki, Y.; Wojcik, M. J.; Popp, J. Eds.; Wiley-VCH, Weinheim, Germany, 2019; pp119-146.

17. Morisawa, Y.; Yasunaga, Sato, H.; Fukuda, R.; Ehara, M.; Ozaki, Y. J. Phys. Chem. B, 2014, 118, 11855-11861.

18. Morisawa, Y.; Tachibana, S.; Ikehata, A.; Yang, T.; Ehara, M.; Ozaki, Y. ACS Omega, 2017, 2, 618-625.

19. Beć, K. B.; Morisawa, Y.; Kobashi, K.; Grabska, J.; Tanabe, I.; Ozaki, Y. J. Phys. Chem. C, 122, 28998-29008.

20. Beć, K. B.; Morisawa, Y.; Kobashi, K.; Grabska, J.; Tanabe, I.; Tanimura, E.; Sato, H.; Wójcik, M. J.; Ozaki, Y. Phys. Chem. Chem. Phys., 2018, 20, 8859-8873.

NIR Spectroscopy

21. Beć, K. B.; Grabska, J.; Ozaki, Y.; Hawranek, J. P.; Huck, C. W. J. Phys. Chem. A, 2017, 121, 1412-1424.

22. Beć, K. B.; Futami, Y.; Wójcik, M. J.; Ozaki, Y. Phys. Chem. Chem. Phys. 2016, 18, 13666.

23. Beć, K. B.; Futami, Y.; Wójcik, M. J.; Nakajima, T.; Ozaki, Y. J. Phys. Chem. A, 2016, 120, 6170.

24. Grabska, J.; Beć, K. B.; Ishigaki, M.; Huck, C. W.; Ozaki, Y. J. Phys. Chem. B, 2018, 122, 6931.

25. Kirchler, C. G.; Pezzei, C. K.; Beć, K. B.; Mayr, S.; Ishigaki, M.; Ozaki, Y.; Huck, C. W. Analyst, 2017, 142, 455-464.

26. Futami, Y.; Ozaki, Y.; Hamada, Y.; Wójcik, M. J.; Ozaki, Y. Chem. Phys. Lett. 2009, 482, 320-324.

27. Futami, Y.; Ozaki, Y.; Hamada, Y.; Wójcik, M. J.; Ozaki, Y. J. Phys. Chem. A, 2011, 115, 1194-1198.

28. Gonjo, T.; Futami, Y.; Morisawa, Y.; Wójcik, M. J.; Ozaki, Y. J. Phys. Chem. A, 2011, 115, 9845-9853.

29. Schuler, M. J.; Hofer, T. S.; Morisawa, Futami, Y.; Huck, C. W.; Ozaki, Y, Phys. Chem. Chem. Phys. 2020, 22, 13017-13029.

30. Beć, K. B.; Karczmit, D.; Kwasniewicz, M.; Ozaki, Y.; Czarnecki, M. A. J. Phys. Chem. B, 2019, 123, 20, 4431-4442.

IR Spectroscopy

31. Krzysztof Bec, Justyna Grabska, Yukihiro Ozaki, Jerzy P. Hawranek, and Christian Huck, Influence of Nonfundamental Modes on Midinfrared Spectra: Anharmonic DFT Study of Aliphatic Ethers, J. Phys. Chem. A, 121, 1412-1424 (2017)

32. Beć, K. B.; Grabska, J.; Czarnecki, M. A.; Huck, C. W.; Wojcik, M. J.; Nakajima, T.; Ozaki, Y. J. Phys. Chem. B, 2019, 123, 10001-10013.

33. Krzysztof B. Beć, Justyna Grabska, Christian W. Huck, Yukihiro Ozaki, Jerzy P. Hawranek, Computational and quantum chemical study on high-frequency dielectric function of tert-butylmethyl ether in mid-infrared and near-infrared regions, Journal of Molecular Liquids, 224, 1189–1198 (2016).

34. Mateusz Z. Brela, Marek J. Wójcik, Łukasz J. Witek, Marek Boczar, Ewa Wrona, Rauzah Hashim, and Yukihiro Ozaki, Born–Oppenheimer Molecular Dynamics Study on Proton Dynamics of Strong Hydrogen Bonds in Aspirin Crystals, with Emphasis on Differences between Two Crystal Forms, J. Phys. Chem. B, 120, 3854-3862 (2016).

Low-frequency Vibrational Spectroscopy: FIR/Terahertz/Low-frequency Raman spectroscopy

35. Yamamoto, S.; Morisawa, Y.; Sato, H.; Hoshina, H.; Ozaki, Y. J. Phys. Chem. B, 2013, 117, 2180-2187.

36. Yamamoto, S.; Miyada, M.; Y.; Sato, H.; Hoshina, H.; Ozaki, Y. J. Phys. Chem. B, 2017, 121, 1128-1138.

37. Yamamoto, S.; Onishi, E.; Sato, H.; Hoshina, H.; Ishikawa, D.; Y. Ozaki, J. Phys. Chem. B, 2019, 123, 5368-5376.

38. Yamamoto, S.; Bouř, P.; In Frontiers of Quantum Chemistry, Wojcik, M. J.; Nakatsuji, H.; Kirtman, B.; Ozaki, Y., Eds.; Springer Nature, Singapore, 2018. pp181-197.

Raman Optical Activity

39. Yamamoto, S.; Furukawa, T.; Bouř, P.; Ozaki, Y. J. Phys. Chem. A, 2014, 118, 3655-3662.